On the existence of weak solutions for a nonlinear system of Atmosphere dynamics counting with humidity and heat transfer

A. Giniatoulline

Abstract

A nonlinear model of the mathematical fluid dynamics of the Atmosphere is considered. The model is a generalization of the nonlinear Navier-Stokes system with the addition of the equations for changeable density, humidity, moisture content in the clouds and heat transfer. An explicit algorithm for a weak solution is constructed by Galerkin method, the "a priori" estimates for the weak solution are obtained and the proof of the existence of the weak solution is given.

Keywords-A Priori Estimates, Galerkin Method, Navier-Stokes Equations, Nonlinear Partial Differential Equations, Weak Solutions.

I. Introduction

LET us consider a bounded domain $\Omega \in R^{3}$ with a smooth boundary, and the following nonlinear system of fluid dynamics

$$
\left\{\begin{array}{l}
\frac{\partial v_{1}}{\partial t}-\omega v_{2}-v_{1} \Delta v_{1}+v^{\prime} \cdot \nabla v_{1}+\frac{\partial p}{\partial x_{1}}=f_{1} \\
\frac{\partial v_{2}}{\partial t}+\omega v_{1}-v_{1} \Delta v_{2}+v^{\prime} \cdot \nabla v_{2}+\frac{\partial p}{\partial x_{2}}=f_{2} \\
\frac{\partial v_{3}}{\partial t}-v_{1} \Delta v_{3}+v^{\prime} \cdot \nabla v_{3}-\mu v_{4}+g v_{5}+\frac{\partial p}{\partial x_{3}}=f_{3} \\
\frac{\partial v_{4}}{\partial t}-v_{2} \Delta v_{4}+v^{\prime} \cdot \nabla v_{4}+s v_{3}=f_{4} \tag{1}\\
\frac{\partial v_{5}}{\partial t}-v_{2} \Delta v_{5}+v^{\prime} \cdot \nabla v_{5}=f_{5} \\
\frac{\partial v_{6}}{\partial t}-v_{2} \Delta v_{6}+v^{\prime} \cdot \nabla v_{6}=f_{6} \\
\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}}=0 .
\end{array}\right.
$$

Here $x=\left(x_{1}, x_{2}, x_{3}\right) \quad$ is the space variable, $v(x, t)=\left(v^{\prime}, v_{4}, v_{5}, v_{6}\right), \quad v^{\prime}(x, t)=\left(v_{1}, v_{2}, v_{3}\right) \quad$ is the velocity field, v_{4} is the temperature, v_{5} is the humidity, v_{6} is
moisture content in the clouds, $p(x, t)$ is the scalar field of the pressure, $f(x, t)=\left(f_{1,}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right)$ is a known function from $L_{2}\left(Q_{T}\right), Q_{T}=\Omega \times[0, T), \quad v_{1}>0$ is the kinematic viscosity parameter, $v_{2}>0$ is the heat conductivity coefficient, and ω, μ, g, s are positive continuous functions of x. The system (1) describes the nonlinear motions of threedimensional incompressible viscous fluid which is rotating over the vertical axis with the angular velocity $\vec{\omega}=[0,0, \omega]$, also with consideration of moisture, humidity and heat transfer. The deduction of the equations (1) for linear nonviscous case is given, for example, in [1]. For non-linear case without the stratification, the equations (1) appear, for example, in [2], where the considered model was used for numerical calculations. For the simplified case of linearized compressible fluid without rotation, the system (1) was studied in [3], where the structure and localization of the essential spectrum of normal vibrations was established. Due to the presence of the fourth, fifth and sixth equations for the unknown functions of temperature, humidity and moisture,and also due to the presence of the rotation parameter, the equations (1) represent a novelty with respect to classical Navier-Stokes equations. In [4], the system (1) was considered for four equations without rotation, heat transfer, humidity and moisture, and there were established some properties of the corresponding weak solution.

Our aim is to obtain the "a priori" estimates for a weak solution of the system (1), to establish the existence and uniqueness of the weak solution, as well as to construct an explicit algorithm for that solution.

II. Problem Formulation

If we introduce the following notations; $\tilde{v}=\left(v^{\prime}, v_{4}, v_{5}, v_{6}\right)$,

[^0]\[

B v=\left[$$
\begin{array}{c}
-\omega v_{2} \\
\omega v_{1} \\
-\mu v_{4}+g v_{5} \\
s v_{3} \\
0 \\
0
\end{array}
$$\right], \quad \nu \Delta v=\left[$$
\begin{array}{c}
\nu_{1} \Delta v_{1} \\
\nu_{1} \Delta v_{2} \\
\nu_{1} \Delta v_{3} \\
\nu_{2} \Delta v_{4} \\
\nu_{2} \Delta v_{5} \\
\nu_{2} \Delta v_{6}
\end{array}
$$\right],
\]

then we can write the system (1) as follows.

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}+\left(v^{\prime} \cdot \nabla\right) v-\nu \Delta v+B v+\nabla p=f \tag{2}\\
\operatorname{div} v^{\prime}=0, \quad x \in \Omega, \quad t \geq 0
\end{array}\right.
$$

We associate the system (2) with the conditions

$$
\left\{\begin{array}{c}
\left.v\right|_{t=0}=0 \tag{3}\\
\left.v\right|_{\partial \Omega}=0
\end{array}\right.
$$

in the bounded domain $Q_{T}=\Omega \times[0, T]$.
Let us multiply the system (2) by $2 v$ in $L_{2}(\Omega)$:

$$
\begin{aligned}
& \left(2 v, v_{t}\right)+2\left(v,\left(v^{\prime} \cdot \nabla\right) v\right)-2(v, \nu \Delta v)+ \\
& +(2 v, B v)+(2 v, \nabla p)=(2 v, f)
\end{aligned}
$$

We integrate the last relation by parts and also with respect to $\tau \in[0, T]$:

$$
\begin{aligned}
& \|v\|_{L_{2}(\Omega)}^{2}+2 \nu_{1}\left\|\nabla v^{\prime}\right\|_{L_{2}\left(Q_{t}\right)}^{2}+2 \nu_{2}\left\|\nabla v^{\prime \prime}\right\|_{L_{2}\left(Q_{t}\right)}^{2}+ \\
& +\int_{Q_{t}}(2 v, B v) d x d \tau=\int_{Q_{t}}(2 v, f) d x d \tau
\end{aligned}
$$

We denote $\sup _{\bar{Q}_{t}}(|\omega|,|\mu|,|g|,|s|)=b<\infty, v=\min \left(v_{1}, v_{2}\right)$ and use the inequalities of Cauchy, Poincare-Friedrichs and the obvious estimate $a c \leq \frac{1}{2}\left(a^{2}+c^{2}\right)$. Thus, we obtain

$$
\begin{aligned}
& \|v\|_{L_{2}(\Omega)}^{2}+2 \nu_{1}\left\|\nabla v^{\prime}\right\|_{L_{2}\left(Q_{t}\right)}^{2}+2 \nu_{2}\left\|\nabla v^{\prime \prime}\right\|_{L_{2}\left(Q_{t}\right)}^{2} \geq \\
& \geq\|v\|_{L_{2}(\Omega)}^{2}+\nu\|\nabla v\|_{L_{2}\left(Q_{t}\right)}^{2}+\nu K(\Omega)\|v\|_{L_{2}\left(Q_{t}\right)}^{2}-2 b\|v\|_{L_{2}\left(Q_{t}\right)}^{2} .
\end{aligned}
$$

After applying Cauchy inequality, we get

$$
\begin{aligned}
& \|v\|_{L_{2}(\Omega)}^{2}+\nu\left\|v_{x}\right\|_{L_{2}\left(Q_{t}\right)}^{2} \leq-\nu K(\Omega)\|v\|_{L_{2}\left(Q_{t}\right)}^{2}+\left\|v^{\prime}\right\|_{L_{2}\left(Q_{t}\right)}^{2}+ \\
& +2 b\|v\|_{L_{2}\left(Q_{t}\right)}^{2}+\frac{1}{2}\|v\|_{L_{2}\left(Q_{t}\right)}^{2}+\frac{1}{2}\|f\|_{L_{2}\left(Q_{t}\right)}^{2}
\end{aligned}
$$

In this way, we have

$$
\|v\|_{L_{2}(\Omega)}^{2}+\nu\left\|v_{x}\right\|_{L_{2}\left(Q_{t}\right)}^{2} \leq C_{1}\|v\|_{L_{2}\left(Q_{t}\right)}^{2}+C_{2}\|f\|_{L_{2}\left(Q_{t}\right)}^{2}
$$

which, of course, implies the estimate

$$
\|v\|_{L_{2}(\Omega)}^{2} \leq C_{1}\|v\|_{L_{2}\left(Q_{t}\right)}^{2}+C_{2}\|f\|_{L_{2}\left(Q_{t}\right)}^{2}
$$

Let us introduce the notations

$$
F(t)=\|v\|_{L_{2}(\Omega)}^{2}, a(t)=C_{2}\|f\|_{L_{2}\left(\varrho_{1}\right)}^{2}, g(t)=\int_{0}^{t} F(\tau) d \tau
$$

Then, the obtained inequality will take the following form:

$$
g^{\prime}(t) \leq a(t)+C_{1} g(t)
$$

Evidently, $\left(g(t) e^{-C_{1} t}\right)^{\prime} \leq a(t) e^{-C_{1} t}$. After integrating the last
estimate with respect to t, we have

$$
g(t) e^{-C_{1} t} \leq \int_{0}^{t} a(\tau) e^{-C_{1} \tau} d \tau
$$

which implies the relations

$$
g(t) \leq a(t) e^{C_{1} t} \int_{0}^{t} e^{-C_{i} \tau} d \tau=\frac{a(t)}{C_{1}}\left(e^{C_{1} t}-1\right)
$$

and

$$
C_{1} g(t) \leq a(t) e^{C_{1} t}
$$

In this way, we get the estimate

$$
C_{1}\|v\|_{L_{2}\left(Q_{t}\right)}^{2} \leq C_{2} e^{C_{1} t}\|f\|_{L_{2}\left(Q_{t}\right)}^{2}
$$

We observe that it follows from the last relation that the "a priori" estimate is valid:

$$
\|v\|_{L_{2}(\Omega)}^{2}+\nu\left\|v_{x}\right\|_{L_{2}\left(Q_{t}\right)}^{2} \leq C\|f\|_{L_{2}\left(Q_{t}\right)}^{2}
$$

where the positive constant C depends only on b, T, Ω.
Let us choose an orthonormal complete set of functions $\left\{u_{k}\right\}$ in the Hilbert functional space

$$
H=\left\{\varphi(x)=\left(\varphi_{1}, \ldots, \varphi_{6}\right): \varphi \in W_{2}^{0}(\Omega), \operatorname{div} \varphi^{\prime}=0\right\}
$$

Now, let $\Phi(x, t)=\left(\Phi_{1}, \ldots, \Phi_{6}\right)$ be test functions from $L_{2}\left(Q_{T}\right)$, which for every $0 \leq t \leq T$ belong to the Sobolev space $\stackrel{0}{W}_{2}^{1}(\Omega)$, and which also satisfy the conditions:

$$
\operatorname{div} \Phi^{\prime}=0,\left.\quad \Phi\right|_{t=T}=0,\left.\quad \Phi\right|_{\partial \Omega}=0
$$

For the weak solution v we require the same conditions as for the functions Φ. We will call $v(x, t)$ a weak solution of the problem (2), (3), if v satisfies the integral identity

$$
\begin{align*}
& \int_{Q_{T}}\left[-\left(v, \Phi_{t}\right)+v_{1} \sum_{i=1}^{3}\left(\nabla v_{i}, \nabla \Phi_{i}\right)+v_{2} \sum_{i=4}^{6}\left(\nabla v_{i}, \nabla \Phi_{i}\right)+\right. \tag{4}\\
& \left.+\left(v,\left(v^{\prime} \cdot \nabla\right) \Phi\right)+(B v, \Phi)\right] d x d t=\int_{Q_{T}}(f, \Phi) d x d t
\end{align*}
$$

for all the functions Φ. Our aim is to prove the result of the existence of the weak solution.

III. Problem Solution

To construct the weak solution, we will use the Galerkin method. We find the approximate solutions of the problem (2), (3) in the following form

$$
\begin{equation*}
v^{N}(x, t)=\sum_{k=1}^{N} C_{k}^{N}(t) u_{k}(x) . \tag{5}
\end{equation*}
$$

In the system (2) we put $v=v^{N}$, multiply by u_{k} in sense of $L_{2}(\Omega)$ and integrate by parts in Ω. In this way, we obtain a Cauchy problem for the system of ordinary differential equations of the type

$$
\begin{align*}
& \frac{d}{d t} C_{k}^{N}(t)+\sum_{j=1}^{N} C_{j}^{N}\left\{u_{j}, u_{k}\right\}-\int_{\Omega}\left(v^{N},\left(v^{N} \cdot \nabla\right) u_{k}\right) d x+ \tag{6}\\
& +\int_{\Omega}\left(B v^{N}, u_{k}\right) d x=F_{k}(t), k=1, \ldots, N
\end{align*}
$$

where

$$
\begin{gathered}
\{\vec{u}, \vec{v}\}=\int_{\Omega}\left[v_{1} \sum_{i=1}^{3}\left(\nabla u_{i}, \nabla v_{i}\right)+v_{2} \sum_{4}^{6}\left(\nabla u_{i}, \nabla v_{i}\right)\right] d x, \\
F_{k}(t)=\int_{\Omega}\left(f, u_{k}\right) d x, k \geq 1 .
\end{gathered}
$$

To prove that (6) is solvable uniquely, we have to verify the "a priori" boundedness of the functions $C_{k}^{N}(t), t \in[0, T]$, in the norm $L_{2}(\Omega)$. Evidently, the required property follows from the inequalities:

$$
\begin{align*}
& \left\|v^{N}\right\|_{L_{2}(\Omega)}^{2}+v\left\|v_{x}^{N}\right\|_{L_{2}\left(Q_{T}\right)}^{2} \leq C\|f\|_{L_{2}\left(Q_{T}\right)}^{2} \\
& \left\|v^{N}\right\|_{L_{2}\left(Q_{T}\right)}^{2} \leq C\|f\|_{L_{2}\left(Q_{T}\right)}^{2} . \tag{7}
\end{align*}
$$

The relations (7) are obtained by the same reasoning as in the previous section. It follows from (7) that the Galerkin approximations (5) are "a priori" bounded. From the sequence $\left\{v^{N}\right\}_{N=1}^{\infty}$, keeping in mind the estimates (7), we can choose the subsequence $\left\{v^{N_{k}}\right\}$ which is weakly convergent to some function $v(x, t)$ in $L_{2}\left(Q_{T}\right)$, together with its first derivatives with respect to $x_{k}, k=1,2,3$. The last fact follows from the weak compactness of bounded sets in the Hilbert space $L_{2}\left(Q_{T}\right)$. It is easy to see that the subsequence $\left\{v^{N_{k}}\right\}$ also tends strongly to v in sense of $L_{2}\left(Q_{T}\right)$, which follows from the generalized Friedrichs lemma ([5]):

$$
\begin{aligned}
& \left\|v^{N^{k}}-v^{N^{m}}\right\|_{L_{2}\left(Q_{T}\right)}^{2} \leq \sum_{l=1}^{N^{e}} \int_{0}^{T}\left(v^{N^{k}}-v^{N^{m}}, u_{l}\right)^{2}+ \\
& +\varepsilon\left\|v_{x}^{N^{k}}-v_{x}^{N^{m}}\right\|_{L_{2}\left(Q_{T}\right)}^{2}
\end{aligned}
$$

Therefore, the sequence $\left\{v^{N_{k}}\right\}$ tends strongly to v.
Now, we have to prove that $v(t, x)$ is a weak solution.
From the definition of the Galerkin approximations it follows that the following relation is valid

$$
\begin{aligned}
& \int_{0}^{T} \int_{\Omega}\left(\frac{\partial v^{N}}{\partial t}, \psi_{k} u_{k}\right) d x d t+\int_{0}^{T}\left\{v^{N}, \psi_{k} u_{k}\right\} d t+ \\
& +\int_{0}^{T} \int_{\Omega}\left(v^{N},\left(v^{\prime N}, \nabla\right) \psi_{k} u_{k}\right) d x d t+\int_{0}^{T} \int_{\Omega}\left(B v^{N}, \psi_{k} u_{k}\right) d x d t= \\
& =\int_{0}^{T} \int_{\Omega}\left(f, \psi_{k} u_{k}\right) d x d t
\end{aligned}
$$

for each function $\psi_{k}(t) \in C_{0}^{\infty}(0, T)$ and for every $k=1, \ldots, N$. Since the approximations $v^{N_{k}^{k}}(t, x)$ converge strongly $v^{N_{k}^{k}}(t, x) \Rightarrow v(t, x)$ in $L_{2}\left(Q_{T}\right)$; then, for every fixed $k \geq 1$ and for every function $\psi_{k}(t) \in C_{0}^{\infty}(0, T)$, the equality is valid:

$$
\begin{aligned}
& -\int_{Q_{T}}\left(v, \psi_{k}^{\prime}(t) u_{k}(x)\right) d x d t+\int_{Q_{T}}\left(v v, \psi_{k} \Delta u_{k}\right) d x d t- \\
& -\int_{Q_{T}}\left(v,\left(v^{\prime}, \nabla\right) \psi_{k} u_{k}\right) d x d t+\int_{Q_{T}}\left(B v, \psi_{k} u_{k}\right) d x d t= \\
& =\int_{Q_{T}}\left(f, \psi_{k} u_{k}\right) d x d t
\end{aligned}
$$

Therefore, we have that $v(x, t)$ is a weak solution of the problem (2)-(3), in other words, the function $v(x, t)$ satisfies the integral identity (4) with the test functions

$$
\Phi^{N}(x, t)=\sum_{k=1}^{N} \psi_{k}(t) u_{k}(x)
$$

Evidently, the relations

$$
\operatorname{div} v^{\prime N}=0,\left.\quad v^{\prime N}\right|_{\partial \Omega}=0
$$

are also fulfilled for the limit function $v(x, t)$.
It remains to verify that $\|v\|_{L_{2}(\Omega)}$ tends strongly to zero as $t \rightarrow 0$.
Indeed, since the "a priori" estimates from the previous section are valid as well for $\left\{v^{N}\right\}$, we have, in particular, that

$$
\left\|v^{N}\right\|_{L_{2}(\Omega)}^{2} \leq C_{1} \int_{0}^{t}\|f\|_{L_{2}(\Omega)}^{2} d \tau
$$

As $v^{N}(x, t)$ tends weakly to v in $L_{2}(\Omega)$, from the last estimate we obtain

$$
\|v\|_{L_{2}(\Omega)}^{2} \leq C \int_{0}^{t}\|f\|_{L_{2}(\Omega)}^{2} d \tau
$$

which implies the property

$$
\lim _{t \rightarrow 0}\|v\|_{L_{2}(\Omega)}=0
$$

In this way, we have proved the following theorem.
Theorem. There exists at least one weak solution for the problem (2)-(3), which can be found as the limit of the approximations (5).

IV. CONCLUSION

The results of this paper, particularly the explicit algorithm for construction of the solution, may be applied in the theoretical and computational study of the Atmosphere and the Ocean, for the models which consider the rotation of the earth, the heat transfer, the humidity and the moisture content.

ACKNOWLEDGMENT

This paper has been supported by "Fondo de Investigaciones", Facultad de Ciencias, Uniandes, Convocatoria 2016-2, Proyecto "Problemas no lineales del líquido rotatorio estratificado".

We would like to thank professor M. Bogovski and professor U. Abdennasser for suggesting the topic of this paper and for their valuable comments.

REFERENCES

[1] D. Tritton, Physical Fluid Dynamics, Oxford: Oxford UP, 1990, ch.2.
[2] A. Aloyan, "Numerical modeling of remote transport of admixtures in atmosphere," Numerical Methods in the Problems of Atmospheric Physics and Environment Protection, Novosibirsk: Ac. Sci. USSR, 1985, pp. 55-72.
[3] A. Giniatoulline, and T. Castro, "On the Spectrum of Operators of Inner Waves in a Viscous Compressible Stratified Fluid," Journal Math. Sci. Univ. of Tokyo, 2012, no. 19, pp. 313-323.
[4] A. Giniatoulline, and T. Castro, "On the Existence and Uniqueness of Solutions for Nonlinear System Modeling Three-Dimensional Viscous Stratified Flows," Journal of Applied Mathematics and Physics, 2014, no. 2, pp. 528-539.
[5] O. Ladyzhenskaya, The Mathematical Theory of the Viscous Incompressible Flow, New York: Gordon and Breach, 1969.

[^0]: This work has been supported by "Fondo de Investigaciones", Facultad de Ciencias, Uniandes, Convocatoria 2016-2, Proyecto "Problemas no lineales del líquido rotatorio estratificado".
 A. Giniatoulline is with the Los Andes University, Bogota D.C., Colombia, South America, 110111 (phone: 571-339-4949; fax: 571-3324340; e-mail: aginiato@uniandes.edu.co).

